Background

- Children's Environmental Health Protection Act required ARB and OEHHA to review all health-based ambient air quality standards.
 - Protective of susceptible populations including infants and children
 - Adequate Margin of Safety
 - Prioritization of standards for full review

Health Protectiveness

- Extent of evidence of effects at or near the existing ambient air quality standard.
- Nature and severity of effects.
- Magnitude of risk when ambient levels are at or near the level of the existing standard.
- Any evidence that children may be more susceptible than adults.
- The degree of outdoor exposure relative to the level of the standard.

Findings for Ozone

- SB25 review identified clinical and epidemiological studies that demonstrated effects of O₃ on pulmonary function, asthma exacerbation and acute morbidity in children and adults at or below the 1-hr CA standard of 0.09 ppm.
- Review indicated need for
 - More stringent standard,
 - Different averaging time, or
 - Both

Key Studies

- Relevant studies ID'd and interpreted?
 - Review was comprehensive but some recent key studies need to be included.
 - Specific recommendations will be provided on a chapter-by-chapter basis.

Susceptible Populations

- Appropriately ID'd?
 - Prolonged periods outdoors doing exertional activities.
 - Children
 - Outdoor workers
 - Athletes
 - Airway allergies
- Other populations that should be considered?
 - COPD and Cardiovascular data are suggestive
 - Too few studies and small subject numbers
- Are data on infants and children appropriately considered?
 - More data needed on *in-utero* exposure and neonates

Uncertainties

- Adequate description?
 - Health Effects
 - Incorporated in discussions
 - Limitations could be better explained
 - Monitoring
 - Measurement precision and relationship to not to be exceeded designation needs to be more clearly described.

Exposure Patterns

- Differences in patterns for susceptible populations are briefly discussed, but could be expanded.
 - Infants
 - Children-especially related to findings of relating asthma and outdoor sports participation
 - Others-outdoor workers, etc.

Standard Recommendations

Staff Recommendations

- Retain O₃ as indicator for oxidant pollutants
 - The monitoring method does not measure some of the other oxidant gases.
 - Only appropriate if O₃ is a good surrogate
 - O₃ as the designated pollutant is appropriate given the degree to which controlled exposures are used in the derivation of the standard.
- − 1-hr Average O₃ at 0.09 ppm
- − 8-hr Average O₃ at 0.070 ppm
- Not to be exceeded.

AQAC Concerns

- Committee is concerned that the proposed standards, although an improvement over current status, can still allow effects in susceptible populations.
 - Chamber studies of 6.6 hr demonstrate effects at 0.08 ppm
 - 8-hr at 0.070 ppm is a higher integrated exposure
 - No study at 0.07 ppm
 - Given the importance of the 6.6 hr studies in the setting of the standard, AQAC would ask for additional justification of the 8-hr standard vs. a 6.6-hr or 6 hr standard
- Benefits chapter suggests significant health as well as monetary benefits.

Future Research

Monitoring

- Personal exposure
- Other oxidant gases

Health

- Susceptible populations
- New indicators of biological response
- Pulmonary function and links to lung disease

AQAC Recommendations

- Accept staff recommendations to retain the 1-hr standard at 0.09 ppm and institute an 8-hr CA standard at 0.070 ppm.
- Recognize that O₃ monitoring method may not measure other oxidant gases and that total oxidant content may be higher.
- O₃ studies should receive research support to expand or replicate key findings that could modify our perception of the adequacy of the margin of safety.
 - In utero
 - Neonates
 - Monitoring
- Strongly recommend that additional research be performed and that these standards be revisited in 5 years.